Def Let X be a complex manifold. A sheaf F of O_X - modules is called locally free of rank r if for any XEX it there exists peU SX such that Flu = Dxlu as sheaves on U.

Def A (holomorphic) vector bundle E of X is a callection of couplex vect. spaces $\{E_x\}_{x \in X}$ s.t. $E = \bigcup_{x \in X} E_x$ has a structure of couplex manifold, the projection map is holomorphic, and for any x e X it there exists Usp and a biholomorphisme

Pu: VEX — VX Er such that $E_X \stackrel{p_{3\times 1}}{\Longrightarrow} 1 \times 1 \times 1 \times 1$ is an isomorphism.

- · Py is called trivialization of E.

 The number to is independent by the trivialization and it is called RANK of E.

Kemark for my XE UNV we have $\phi_{0} \circ \phi_{V} : \{ \times 4 \times \mathcal{L}^{r} \longrightarrow 4 \times 4 \times \mathcal{L}^{r} \\ (\times, v) \longmapsto (\times, j_{U}(x)v) \}$ with guv (x) & GL(r, C).

Thus we have functions gur: UnV -> GL(r, C) that are entry-rise holomorphic and that completely determine the trivializations $\phi_{N} \circ \phi_{V}^{-1}$.

They satisfy the velation

Suv = gvu

Yuv of vw of vw of vw = Idan The collections 1800 you are called traisit. fucis of the vector bundle E. We say that E and Fon Xare isomorphic if it there exists $f: E \longrightarrow F$ bihdom. s.t. $\pi_F \circ f = \pi_E \text{ (i.e. } E \xrightarrow{E} \nearrow F$ and $\pi_E \searrow E \xrightarrow{F} \nearrow F$ Remark $f_x: E_x \longrightarrow F_x$ is an isenorphism. Notice that if Lyury and Mur) are cocycles of E and F, then $h_{uv} = (Y_u \circ Y_v^{-1}) = (Y_u \circ f \circ \phi_v)^{-1} \circ g_{uv} \circ (\phi_v \circ f^{-1} \circ Y_v^{-1})$ $(Y_v \circ f \circ \phi_v)^{-1}$ ou UnV.

Thus, there are two local bihalianorphisms fu EGL (r, o(u)) fr EGL (r, o(v)) such that huv = fuo guv of . Let us consider a couplex (connected) info X and assume to have an a open cover $M = 4U_0V_0$ a set of helom. fcts 1 Jap: $U_0 \cap U_p \Rightarrow 62(\Gamma, \Gamma)_{dp} \Rightarrow 5.t.$ (*I holds. Them we define $E := \bigcup_{n \in \mathbb{Z}} U_0 \times \Gamma^n$ where we identify two points $(P, V) \in \mathcal{U}_{X} \times \mathbb{C}^{r}, (q, W) \in \mathcal{U}_{p} \times \mathbb{C}^{r} \stackrel{\text{def}}{=} \mathbb{S}$ g = p and $W = gpd(p) \cdot V$. The set E has a natural couplex structure given by the inclusions $U_d \times C^r > E$, so that together with the map $\pi: E \longrightarrow X$ if is 2 rauk r vector bundle de X, with this maps

La: Vector bundle de X, with this maps

La: Vector bundle de X, with this maps

(P, San(P)(3/2)) if personny Furthermore, if E is a vect. built on X with cocycles 1 gaptap and F is the vect. builte constructed by 194pt, then $E \cong F$.

We obtained that the set of rouk r vector bundles ou X trivialized by an open cover U=4Ud]a combe ielestified with the set (namely, it satisfies (1))

(namely, it satisfies (1))

properties of (Juplup | gap is a cocycle } where ~ is the velstien

Sapa hap & > = > = = (r,0(U2))/2 s.t. hap = fagabifa We observe that Z'(U,GL(r,0)) = { (94p)2p } gap is a Goyder because the property to be a cocycle in the sense of (*) is equivalent to S & p = 0, where f is the coboundary operator. Assure that r=1. Then ~ translates as gapahap => Fffta e 0* Malha s. E. hap=fa: gapfp = (Sf-1)apgap
comstituity

This wears that n is the coboundary relation and the above quotient is $H^1(\underline{U}, \theta^*)$. What object it happen for [7-1?]
In this case we are working with the sheaf
GL(T,O) which is NOT a sheaf of abelian promps. In this case the coboundary operator $S: C^P \rightarrow C^{P+1}$ is still well defined with the property that $S^2=0$ and so $S(C^P)\subseteq Z^{P+1}$. However, 1. d is NOT au homomorphism; 2. 2pt is NOT a group; 3. $\delta(CP) \subseteq ZP+1$ is NOT a group; In this case it is natural to construct a cohmology for which H'(Y, GL(r, 0)) still remains in bijection with the above grateut, although we could lose the structure of group:

Non-abelian $i^{s\pm}$ (ech cohomology: called Gauge relation Given 6, $T \in Z^{1}(\underline{U}, \overline{J})$, then $6 \sim T$ and $\exists f \in C^{\circ}(\underline{U}, \overline{J})$ Tup=(falunup)· 6 ap· (fplunup). M'(U,J) = 21(U,J)/game Thus The set of voulk r vector bundles on X trivishized by $U = \{M_a, L_a, is in corresp. with <math>H^2(M, GL(r, 0))$ In peneral, the set of rank r vector burelles of X is in corresp. with $H^{1}(X,GL(r,o))$ Def H'(X, O*) is called PICARD GROUP of X, and it is denoted by Pic(X). Since Otis countaire, Pic(X) is an abelian proup and it encodes the line burdles of X (:=Yank 1 vect. burdles), by the previous theorem.

Examples 1) XXIT is the trivial vect. burnolle of rank r, its cocycles are of Tolory A rector budle is their trivial = its cocycles lsapsap are saβ=fafp on Uanyp, and fa ε GL(r, O(Ua)) 2) X=IP, we have a natural vector bundle, called Tautological Burdle: E={[v,w] e P"×C"+1 / we<v>} To,w] ~ P" Uxi = {xi +o}, then we have trivializations $T^{-1}(\mathcal{U}_{x_i}) \xrightarrow{f_i} \mathcal{U}_{x_i} \times C$ $[\overline{\mathcal{V}}, \omega] \longrightarrow (\overline{\mathcal{V}}, \omega_i)$ (\bar{v}, \bar{v}) The cocycles are then $g_{si} = L_{so} L_{i}^{-1} : U_{xi} n U_{xs} \longrightarrow L_{xi}^{*}$ $I_{xo, ...} \times I_{xi} \longrightarrow X_{si}^{*}$ => 185; = x5);=9... define the toutological buslle of Pruhich is a line buslle.

3) Any operation among vector spaces includes

New vector budles;

Given a rank to vector bundle E=>X

with cocycles 19xp1xp, and a rank 5 vect.

bundle F=>X with cocycles 4 hxp1xp, then

(Dual) E+->X is the vect bundle of vank to

defined by 1 (9xp) Jxp;

Direct Sum) E==>X is the vect. bundle or rank

(Direct Sum) EFF->X is the vect. Lundle or rouk

1 (Sap 0) } App

1 (Sap 0) } App

(Tensor product) E&F-DX is the vect. bundle
of rank r.s defined by

1 gap & hap 3 ap

with $g_{x,p}(x) \otimes h_{x,p}(x) \in GL(n, C \otimes C^2)$ Remark If both E and F are line bundle, then $E \otimes F$ is still a line bundle, so we have a natural operation on the sets of line bundles of X. This operation makes the set a group and the previous bijection (Tine bundles J, \otimes) \sim Pic(X) becomes an isomorphism of groups

(Alt. power) NETS X is the vector bundle of rank (k) defined by of Argua Bup where $\Lambda^{\kappa}g_{\mu}p(x) \in GL(\Lambda^{\kappa} \mathcal{L}^{h})$ (Determinant) (N°E) -> X is always a line burelle, denoted by

det(E)

This is called determinant bualle. Kemark Ou X ne always have two natural rank n vector burdles, where h:=din(X): TX -> X

with cocycles thousit factors

\[\frac{1}{5}(\frac{1}{2}\cdot \frac{1}{5})\frac{1}{2}\rho
\]

\[\frac{1}{5}(\frac{1}{2}\cdot \frac{1}{5})\frac{1}{2}\rho
\] Then we sluggs have a natural line bundle slet (T*X) ->X $(\mathsf{V}_{\tilde{n}} \perp_{\mathsf{A}} \mathsf{X})$ with cocycles of det J'(I2. Ip) } dp. Def det IT*X) is called CANONICAL BUNDLE
of X, and it is denoted by Wx.

(Pullback) Let E=>y be a vect. bundle and X=>y be a holoworphic map. Then the pullback budle is a vector bundle $f^*E \rightarrow X$ defined as $\{(p,e) \in X \times E \mid \pi(e) = f(p)\}$ This is also known as fibre product of π and $X \rightarrow Y$ f. F. The trivializating maps are given in this way: let $p \in X$, then $f(p) \in \mathcal{I}$ and it there exists $U \ni f(p)$ and a bihalous phic map Lu: π'(U)-DUxCr But then we define the trivialization $Y_u: (\pi')^{-1}(f^{-1}(u)) \longrightarrow f'(u) \times C^r$ $(q,e) \longmapsto (q,Y_u(e))$ and the cocycles are 1gvu°f: f(UnV)->GL(r,C)guv Thus, if Allaha is a trivializating open cover of E-59 with cocycles Ipap bap, then If-'(Uanyp) bap is a trivialize open cover of f'E T'> X with boughts Jogof: f(U2NUp) → GL(r(C) B2B

§ 3.1 Correspondence Vector burdles - Locally free Sheaves

Def given $U \subseteq X$, a section of $E \longrightarrow X$ over U is a holom. Map $G: U \longrightarrow E$ such that $\pi_0G = \operatorname{Id}_{\mathcal{U}}$.

We can easily define the sun two sections over U and the product of a holomorphic function f on U and a section over U. Thus, T(U,E):={sections over U of E = X} is a sheaf of X of O_X -modules.

Def A france of E => X over U is a collection of 6,, or sections over U s.t.
6,, or sections over U s.t.
6,(x), 6r(x) are lin. indip. $\forall x \in \mathcal{U}$. (and so a basis of C^r)
Kemark & natural frame of E => x over a
Kennark & natural frame of ET>X over a trivializating open set UEX of ET>X
with trivialization In: WEX->UXCT is the following:
$\mathcal{L}_{u(x,e_{1})}^{-1}(x,e_{1}),, \mathcal{L}_{u(x,e_{1})}^{-1}(x,e_{1})$ $\varepsilon_{i}(x)$ $\varepsilon_{i}(x)$
$\epsilon_{L}(X)$ $\epsilon_{L}(X)$
Given a section 6: VEU-> E, then 6 can be
Given a section $6:VEM \rightarrow E$, then 6 can be written as $I_{V} \circ 6(x) = (f_{\ell}(x),, f_{r}(x))$, so
$6(x) = \sum_{i=1}^{n} f_i(x) \cdot e_i(x) \text{ with } f_i \in O(V).$
This defines a natual isomorphism Dx-modules
$\Gamma(U, E)_{V} \rightarrow \bigoplus_{i=1}^{r} \theta_{x}(u)_{V}$
6 (f ₁ ,, f _r)
We have proved that $\Gamma(-,E)$ is a locally free
We have proved that $\Gamma(-,E)$ is a locally free sheaf of rank r .

Couversely, let us consider a locall free sheaf Fof rank r. Then it there exists an open cover y=1 u_{x} u_{x} Thus, we have maps: $\frac{(\mathcal{L})}{(\mathcal{L})} \underbrace{\partial_{\mathcal{L}}(\mathcal{U}_{a} \cap \mathcal{U}_{p})}_{\mathcal{L}_{i}} \xrightarrow{\mathcal{L}_{i}} \underbrace{\partial_{\mathcal{L}_{i}}(\mathcal{U}_{p})}_{\mathcal{L}_{i}} = \underbrace{\partial_{\mathcal{L}_{i}}(\mathcal{U}_{a})}_{\mathcal{L}_{i}} \xrightarrow{\mathcal{L}_{i}} \underbrace{\partial_{\mathcal{L}_{i}}(\mathcal{L}_{i})}_{\mathcal{L}_{i}} \xrightarrow{\mathcal{L}_{i}} \underbrace{\partial_{\mathcal{L}_{i}}(\mathcal{L}$ is an isonorphism of Oxlump1-modules. But then given $(f_1, ..., f_r) \in \bigoplus_{i=1}^{n} O_{\times}(U_{an}U_{pl})$, we have $\phi_{pd}(f_1, -f_r) = \phi_{pd}(\Sigma | f_5 e_5) = \Sigma | f_5 \phi_{pd}(e_5)$ So $(f_{1,-}, f_{r}) \xrightarrow{\phi_{BA}} (\phi_{BA}(e_{i}))_{i} \cdot \begin{pmatrix} f_{1} \\ \vdots \\ f_{r} \end{pmatrix}$ Columns
of the matrix Mowever, ppd is In iso, so fpd := (\$\pa(e_i)); is au nivertible matrix on O(U21 UB). By construction, it is clear that · fpd = gdp on O(UdnUp). · Jer o gra ofap=Id on O(Vanypnur).

We have constructed cocycles of X IPPd pa which de fine a vector burdle EJX with Transition factions Ld: XENXEX -DULXET (P, >1,...>r) -> (P, SLy(P)(31)) if PEULINA turthermore, me have an iso piven U: V as follows 3 | 3: U -> E (3") x -> [(x, 3x(x))] Flud For Oxing and Speper Sa where ppd=popd-1 Thus, f -> [(-, E) is an isomorphism We have proved the correspondence Locally free sheaves of XI
of vank 1
150 Trank r vect. L. 1 budles on X 1/150 H'(X,GL(r,o))live buolles which become i souverphisus of proups for [r=1]

fellowing maps: Locally free sheaves of y? It hocally free sheaves of X6 of vank r 150 => f+f (inverse image)
sheaf H'(X,GL(r,o)) M(9,GL(r,o))1 Sap = F }ap 2 gap Jap and when r=1 then the horizontal map heurs mor phisms of greups.

Given f: X-> y, then we have the

§ 4 <u>Divisors</u> Let X be a correlex manifolo

Let X be a couplex manifold of din. n. (Here we don't need X to be compact).

An analytic hypersurface VEX is an analytic subvariety of dimension N-1.

Facto V is defined boally around a pointper by a single

Marning! Fact 0 holds because X is Smooth. If we want to work with something singular, we need to distinguish between Cartier and Weil drisors.

Facts Forthermore, if g is a holomorphic faction defined locally at p and vanishing on V, then g is divisible by f in a neighborhood of p by a faction not vanishing at p.

Thus, f is called local defining fuction of Vit p. Fact 2 Any analytic hypersurface V can be obcomposed as a finite union of irreducible analyt. hypersurfaces V= Vi U --- UVm. Def A ((artier) divisor Dou X is a formal "Apex awap that intersects only a finite number of Vi" a formal locally finite integer combination of itr. analytic hyperson fices:

D= I ai Vi , ai E Z. Div(X) is the set of Cartier divisors of X, which is a proup with the natural sum. · Dis effective if aizo for each i. Let V be su irreducible hypersurf. of X, peV, and g be a local holomorphic fuction hear p. Then, if f is a local define function of V, from Fact 1 g is devided by f: $g = h f^{a}$, $h(p) \neq 0$ We define ord_{V,P}(g):=2. Fact 3: $\operatorname{ord}_{V,p}(g)$ is indipendent by the choice of $p \in V$. Thus, we can define $\operatorname{ord}_{V,p}(g)$: $= \operatorname{ord}_{V,p}(g)$.

Reurk ordy (gh) = ordy (g) + ordy (h) Let f be à meremorphic fuction on pellex, uniteu locally as f= f around pel. Then we define evely (f) := ordy(g)-ordy(h) Given a plobal merenorphic faction of on X, then ver may associate to f the dissor $div(f) := \subseteq ovd_V(f) \cdot V$ Def div(f) is called Principal Divisor The set of principal dissors is a subgroup of DivIXI and is denoted by $PDir(X) \leq Dir(X)$

Example $X = \mathbb{R}^2$, $f = f(X, \frac{X_1}{X_0})$ is a global uncrean. function of $X \Rightarrow \text{div}(f|=(x_1)-(x_0)=1x_1=04-1x_0=0)$. Instead, $f = f(X, \frac{X_1}{X_0})$ have $\text{div}(f)=2(x_1)-2(x_0)$.